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Abstract 

An exact representation of the accurately computable 
conditional probability density function (c.p.d.f.) of 
the three-phase invariant for the space group P1 was 
developed in paper I of this series [Shmueli, 
Rabinovich & Weiss (1989). Acta Cryst. A45, 361- 
367]. The computation of this function is too time- 
consuming for it to be of practical value. It is therefore 
desirable to find simple approximations based on the 
exact result that may be more accurate than the 
familiar Cochran approximation or its extensions. 

One such approximation, presented here, has the 
same functional form as the Cochran approximation 
but with a modified parameter in place of that appear- 
ing in Cochran's distribution. Some of the numerical 
procedures used in the estimation of this modified 
parameter are also discussed. 

Introduction 

One of the earliest and still the most frequently 
employed phase-dependent quantities is the three- 
phase structure invariant, which is the phase of the 
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triple product E ( h ) E ( k ) E ( - h - k ) .  The phase infor- 
mation of interest is extracted from these invariants 
with the aid of a combination of deterministic and 
probabilistic relationships. Among the most impor- 
tant of these is the conditional probability density 
function (c.p.d.f.) of the phase sum, 

¢~ = (~h -lt" (#k "Jr ( ~ - h - k  , (1) 

where ~Ph is given by exp (@h)= E(h)/lE(h)[ and • 
is independent of the choice of the space-group origin. 
The distribution of • is, in general, conditioned on 
some constants that characterize the crystal, such as 
the atomic composition of the asymmetric unit, the 
space-group symmetry, the extent of noncrystallo- 
graphic symmetry and anomalous dispersion, and on 
the magnitudes IE(h)I, IE(k)l and IE(-h-k)l. These 
magnitudes will be denoted, for brevity, by El, E2 
and E3, respectively. The approximation to the c.p.d.f. 
derived by Cochran (1955) on the basis of the central 
limit theorem is 

p( OIEI, Ez, E3, N)=[2"n-Io(K)]-' exp(K cos 0) ,  (2) 

where, in the equal-atom case, s: is given by 

K = 2N-I/2EIEzE3, (3) 

lo(x) is a modified Bessel function and N is the 
number of atoms in the unit cell. Equation (2) can 
be generalized in a number of different ways. These 
include expansions in terms of orthogonal poly- 
nomials (see, for example, Naya, Nitta & Oda, 1965; 
Hauptman, 1971; Giacovazzo, 1974)and variants of 
the exponential distribution (Karle, 1972; Karle & 
Gilardi, 1973; Peschar & Schenk, 1986). These correc- 
tions to (2) are given in terms of rather lengthy 
expressions, the convergence properties of the result- 
ing sums can be rather poor, and they have therefore 
had limited applications in practical problems. 

An alternative approach to the general problem of 
calculating expressions for probability densities for 
both intensity statistics and direct methods is to find 
the c.p.d.f, starting from an exact expression for the 
corresponding characteristic function. This strategy 
has been adopted in a series of papers, following the 
initial suggestion by Shmueli, Weiss, Kiefer & Wilson 
(1984), and results in Fourier expansions of the 
desired densities, in which the coefficients are 
expressible in terms of the characteristic functions 
evaluated at the appropriate values of the arguments. 
Exact representations of the characteristic functions 
are available for most space groups (Rabinovich, 
Shmueli, Stein, Shashua & Weiss, 1991) and their 
application to finding numerical univariate distribu- 
tions presents no problems in practice (Shmueli, 
Weiss & Kiefer, 1985; Shmueli & Weiss, 1987, 1988). 
The successful application of these ideas to univariate 
distributions encouraged us to extend them to multi- 
variate densities, required for the implementation of 
direct methods. At present there are three such calcu- 

lations available: that for the densities ofY~l (Shmueli 
& Weiss, 1985) and Y~2 (Shmueli & Weiss, 1986) in 
the space group P1 and that for the three-phase 
invariant (Shmueli, Rabinovich & Weiss, 1989a, b) 
in the space group P1. 

In this paper, we intend briefly to summarize an 
exact derivation of the c.p.d.f, of the three-phase 
invariant in P1, comparing the numerical results to 
those found from Cochran's approximation, and 
derive a new approximation based on accurate 
numerical results computed by the techniques of 
Shmueli et al. (1989a, b). Our suggested approxima- 
tion takes the form of Cochran's (1955) result given 
in (2) with a modified definition of the parameter K 
that appears in that equation. We calculate this par- 
ameter for a range of values of El, E2, E3 and N. 
Preliminary results obtained by this approach have 
been given elsewhere (Shmueli & Weiss, 1990). 

The Fourier c.p.d.f, of the three-phase invariant 

We shall now describe briefly the general form of the 
exact expression for the c.p.d.f, of O, as given by (1), 
given the magnitudes [E(h)[, IE(k)] and [ E ( - h - k ) [ ,  
the symmetry of the crystal and the composition of 
the asymmetric unit, as obtained by Shmueli et al. 
(1989a, b) and applied to the space group P1. The 
following additional abbreviations will be used: 

~h'~---- (~1, (~k ~ (~2, ( ~ - h - k  ~--- ~03 (4) 

and 

E(h) = A~ + iBl = El(COS ~Ol + i sin ~ol) (5) 

etc. for k and - h  - k. The main stages of the derivation 
are: 

1. Expansion of the joint p.d.f, of Al, B~, Az, B2, 
A 3 and B 3 in the sixfold Fourier series 

p(E)=(a /2 )6Z  Ca 
u 

X exp l--~io~ ~ (U2k_lAk-[- U2kBk) ( 6 )  

= (a/2)6 Z C,, 
u 

where 

xexp[--Triak=~ DkCOS(~pk--Ak)], (7) 

E T = ( A 1 , B , , A 2 ,  B2, A3, B3), (8) 

uT = ( u , , . . . ,  u6), (9) 

Dk = Ek(u~k_, + u~k) '/2, (10) 

Ak =tan  -) (U2k-,/U2k) (11) 

and a is the reciprocal of the sum of the normalized 
scattering factors, extending over the unit cell. 
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2. Replacement of the phase ¢3 in (7) by ~ - ¢ , -  
¢2 and integration of the joint p.d.f. (7) over the 
phases ¢, and ¢2. 

3. Calculation of the Fourier coefficient C, for the 
crystal symmetry and composition of interest. We 
assume here that the atomic contributions to the 
structure factor are independent and that the atoms 
are uniformly distributed throughout the unit cell. 
Effects of dispersion and noncrystallographic sym- 
metry are also disregarded in this paper. 

The above three steps lead to the required exact 
c.p.d.f., which assumes the general form 

pex(~IE,,E2, E3,...)=K~, C,,Zu, (12) 
u 

where Z,  depends on the three-phase invariant, the 
magnitudes of the normalized structure factors in- 
volved and not on symmetry and composition, and 
K is a normalization constant. Detailed expressions 
for the quantities appearing in (12) are given by 
Shmueli et al. (1989a). It is also shown in the latter 
reference that (12) reduces to the Cochran c.p.d.f. (2) 
when only the lowest-order terms in the characteristic 
function C are retained. Although (12) converges 
rapidly in the useful range of the conditions, its 
numerical evaluation is rather time-consuming. We 
therefore believe that the practical importance of the 
exact c.p.d.f. (12) is that it can form a once-computed 
basis for a useful numerical approximation. Such an 
approximation will be developed in the following 
section. 

The modified-K approach 

As one might expect, the results of Cochran's (1955) 
approximation in (2) and the Fourier c.p.d.f, in (12) 
agree quite well for weak or moderately large values 
of the Ei and a large number of atoms in the unit cell 
of P1. When either of these conditions is violated, 
the discrepancy between results obtained from the 
two approaches can be substantial, as shown by 
Shmueli et al. (1989b). An extensive set of such calcu- 
lations suggests that in all cases the exact c.p.d.f, has 
a single maximum at ~ = 0  and is more sharply 
peaked at that maximum than is the c.p.d.f, produced 
by the Cochran approximation. This finding is very 
much in line with our earlier calculations for the 
density functions for Y4 and ~2 (Shmueli & Weiss, 
1985, 1986). These calculations also indicate that the 
qualitative effect of increasing atomic heterogeneity, 
with fixed N, is equivalent to that of a decreasing N 
in an equal-atom structure. 

While there are quantitative differences between 
exact c.p.d.f.'s and the Cochran approximation, they 
are qualitatively quite similar. This was suggested to 
us by an extensive comparison of the shapes of the 
various c.p.d.f.'s that were computed. We have there- 
fore examined the consequences of a very simple 

approximation of the form 

Papp(qblK')=[27rlo(K')]-' exp(K'COS qb), (13) 

where the parameter K' is calculated by the require- 
ment that the exact and approximate c.p.d.f.'s should 
match exactly at the maximum at qb = 0, 

Pex(0l g~, E2, E3 , . . . )  -- paoo(0l E,, E2, E3). (14) 

After having found the value of K', as described 
above, we can compare the results obtained with (13) 
both against the Cochran approximation and against 
the exact c.p.d.f, at values of • other than 0. 

This simple approach works surprisingly well, as 
can be seen from Figs. l (a)  and (b). However, it is 
evident that the extent of agreement between the 
c.p.d.f.'s computed from (12) and (13) does not 
depend only on the triple product E, E2E3 as a single 
parameter and so the dependence on the separate 
values of E,,  E2 and E 3 must be taken into account. 
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Fig. 1. Cond i t iona l  p.d.f . 's  o f  the th ree -phase  invar iant  in P1. The  
solid lines represent  C o c h r a n  c.p.d.f . 's  [(2)],  the black dots 
co r r e spond  to accura te ly  c o m p u t e d  c.p.d.f. 's  [(12)] and  the 
dashed  lines are c.p.d.f . 's  c o m p u t e d  f rom the modified-K 
a p p r o x i m a t i o n  [(13)] descr ibed  in the text. The equa l -a tom case 
is cons idered  throughout .  ( a )  E l = E 2 = 1.50, E 3 = 1.75, N = 40; 
(b)  E l = 2.00, E 2 =2.50,  E 3 = 2.75, N = 15. 
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Since we want a conveniently computable approxima- 
tion, we calculated a best estimate of the ratio p - K'/K 
for different values of the parameters E~, E2, E3 and 
N. For simplicity, our computations are restricted to 
equal-atom unit cells, the range of parameters being 
restricted as detailed below. 

The ratio p -- K'/K was first computed for each of 
El,  E2 and E 3 varying from 1.25 to 2.75 in steps of 
0.25 and for N varying from 15 to 40 in steps of 5. 
The computation of p values corresponding to E~ = 
E 2 = E 3 = 2.75 was omitted because of convergence 
problems encountered in the evaluation of (12). Use 
was made of the fact that (12) is invariant under 
permutation of E~, E 2 and E 3. The construction of 
these data was the most time-consuming stage of the 
computation since it involved the computation of the 
exact c.p.d.f, on a grid of points in the (E~, E2 ,  E3)  

space for each of the above values of N. Two sections 
of such grids are illustrated in Fig. 2, which shows 
the dependence of the ratio K'/K on the variation of 
E~ and E 2 for fixed E 3 and different values of N. The 
computation of these exact c.p.d.f.'s followed the 
procedure described by Shmueli et al. (1989a, b). 

Examination of several p(E~, E2) grids, with E3 
and N being kept constant, indicated that such 

4 ~ : ,~ i i i i i i i i i i  

:liiiiii/i 
1. 

(a) 

! i i~ ! i ! i l i ,  
ii iliil 

! . : i  
. . : : i ~ ! ~ ! !  

45 ::~ iii ii i i 
4 iiiiiiiiiiiiiii~i 
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h E 

Fig. 2. Two-dimensional surfaces of  modified-K ratios. Two sur- 
faces of  p(El, E2) are presented and the ratios obtained by exact 
computations (black dots) and those obtained by bicubic spline 
interpolation are shown for constant values of  N and E3. (a) 
N = 1 5 ,  E3= 1.50; (b) N = 3 5 ,  E3=2.50. 

Table 1. Coefficients of thepolynomial in (15) 

The numerical coefficients of  the various terms in (15) are listed 
for the numbers of  atoms for which the c.p.d.f.'s were computed 
exactly. For intermediate values of  N, an interpolation can be used 
(see text). 

Coefficient 

a l  

a 2  

a 3  

a 4  

Number  of  atoms 
15 20 25 30 35 40 

0.61306 0.97883 0.48385 0.61757 0.41246 1.21311 
0.81738 0.13870 0.94995 0.69634 1.02220 -0.33332 

-0.22587 -0.02688 -0.24003 -0.17229 -0.25844 0.09783 
0.10915 0.03567 0.04313 0.03004 0.03537 -0.00123 

p(EI, E2) surfaces are rather smooth and therefore 
polynomial fitting and good graphical representation 
are achieved by interpolation. We chose the method 
of bicubic spline interpolation (Press, Flannery, 
Teukolsky & Vetterling, 1986) for this purpose. Two 
surfaces, obtained by the above method, are illus- 
trated in Fig. 2, in which the black dots correspond 
to p values obtained by fitting K' to (12) and the 
intersections of the smooth curves correspond to 
interpolated p values. We examined all 42 p (El ,  E2) 

grids, within our range of parameters, and fitted to 
each of them a two-dimensional least-squares poly- 
nomial. This calculation gave satifactory results and 
would, in principle, satisfy our requirement. 
However, 42 sets of polynomial coefficients would 
have to be presented to the user of this approximation 
and, therefore, a simpler approach was investigated. 

One possible approach is a three-dimensional least- 
squares fit. In this context, six three-dimensional grids 
in the (El ,  E2, E3) space were constructed, one for 
each value of N, and to every such grid a cubic 
polynomial of the form 

p ( E I ,  E 2 ,  E3)  

=a~+ T(a2+a3Tl+a4T2+asT3), (15) 

where T--  E1EEE3, 7"1 = EI+ E2+ E3, 7"2 = E2+ E2+ 
E 2 and Ta--EIE2+EEEa+EaEI, was fitted by the 
(linear) least-squares method. We present in Table 
1 the coefficients of these polynomials for the six 
values of N for which exact computations were 
carried out. For each exact computation of the c.p.d.f. 
that was available, we computed the corresponding 
approximate c.p.d.f, while making use of the K ratio 
given by (15). The discrepancy between an approxi- 
mate and an 'exact' c.p.d.f, is conveniently indicated 
by an R factor of the form 

l R =  F. (p~pp_p~X)2 F. (p~pp)2 , (16) 
k = l  k = l  

where the summations extend over M values of • 
[here M = 20 and the 4) range extends from 0 to 90 ° 
(cf Shmueli et al., 1989b)]. Table 2 lists the average 
R factors comparing ideal (Cochran-type), approxi- 
mate (from modified K) and exact c.p.d.f.s. It is seen 
that the modified-,< approximation agrees very well 
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Table 2. Discrepancy factors for the polynomial fit 

The average  R factors  be tween  condi t ional  p.d.f . 's  are listed for  
the th ree -d imens iona l  po lynomia l  (15). Co lumns  A, B, C and  D 
refer  to ranges  o f  values o f  the t iple product ,  T, for  which R was 
computed .  A: T < 6 ;  B: 6 -  < T < 1 0 ;  C:  1 0 - < T < 1 4 ;  D: 14-<T. 
The  at t r ibute ' a p p r o x i m a t e '  refers to c.p.d.f. 's  c o m p u t e d  f rom the 
least-squares  fit to the K ratio and  the use of  (13); "Cochran '  refers 
to (2) and  ' exac t '  refers to (12). 

( a )  C o m p a r i s o n  o f  a p p r o x i m a t e  and  ideal (Cochran)  c.p.d.f. 's  
N u m b e r  o f  

a toms  A B C D 

15 0.1714 0.3105 0.3845 0.4532 
20 0.1352 0.2284 0.2810 0.3231 
25 0.1098 0.1816 0.2268 0.2886 
30 0.0914 0.1522 0.1886 0.2380 
35 0.0785 0.1307 0.1630 0.2228 
40 0.0656 0.1181 0.1417 0.1350 

(b)  C o m p a r i s o n  o f  exact  and  a p p r o x i m a t e  c.p.d.f . 's  
N u m b e r  o f  

a toms  A B C D 

15 0.0351 0.0386 0.0371 0.0327 
20 0.0160 0.0196 0.0190 0.0214 
25 0.0120 0.0147 0.0168 0.0386 
30 0.0096 0.0112 0.0128 0.0283 
35 0.0100 0.0103 0.0135 0.0419 
40 0.0070 0.0072 0.0069 0.0267 

Table 4. Discrepancy factors for the nonlinear fit 

The average  R factors  be tween  condi t ional  p.d.f . 's  are listed for  
the nonl inear  funct ion (17). C o l u m n s  A, /3, C and  D refer  to 
ranges  o f  values o f  the triple product ,  T, for  which R was compu ted .  
A: T < 6 ;  B: 6 <  T <  10; C:  10 < - T <  14; D:  14 < - T. The  at t r ibute  
' a p p r o x i m a t e '  refers to c.p.d.f . 's  c o m p u t e d  f rom the K ratio as 
ob ta ined  f rom (17) and  the use o f  (13); ' C o c h r a n '  refers to (2) 
and  ' exac t '  refers to (12). 

( a )  C o m p a r i s o n  of  a p p r o x i m a t e  and  ideal (Cochran)  c.p.d.f . 's  
N u m b e r  o f  

a toms  A B C D 

15 0.1782 0.3139 0.3909 0.4'93 
20 0.1336 0.2297 0.2800 0d239 
25 0.1086 0.1850 0.2272 0.2881 
30 0.0893 0.1546 0.1877 0.2378 
35 0.0754 0.1349 0.1621 0.2202 
40 0.0651 0.1160 0.1414 0.1348 

(b)  C o m p a r i s o n  of  exact  and  a p p r o x i m a t e  c.p.d.f . 's  
N u m b e r  o f  

a toms A B C D 

15 0.0277 0.0314 0.0310 0.0358 
20 0.0162 0.0184 0.0190 0.0205 
25 0.0109 0.0130 0.0148 0.0382 
30 0.0084 0.0100 0.0112 0.0277 
35 0.0072 0.0083 0.0105 0.0393 
40 0.0063 0.0077 0.0071 0.0265 

Table 3. Coefficients of the nonlinear function (17) 

The numer ica l  coefficients o f  the var ious  terms in (17) are listed 
for  the number s  of  a toms  for  which the c.p.d.f. 's  were c o m p u t e d  
exactly.  For  in te rmedia te  values of  N, an in terpola t ion  can be used 
(see text). 

Coefficient  

bl 
b2 
b3 
¢1 
c2 
c3 
C4 

N u m b e r  of  a toms 
15 20 25 30 35 40 

-0.4893 -0.7877 -0.0551 -0.0670 -0.2367 1.5579 
0.1933 0.2740 0.0936 0.0924 0.1069 -0.0933 
0.1701 -0.1140 0 .1181 0 .1161 0.1658 -0.3054 
4.2039 2.1855 1 .5659  1.6213 2 .4151 0.0756 

-0.9824 -0.7393 -0.3699 -0.3800 -0.5863 -0.0228 
0.1221 -1.7093 0.0294 0.0269 0.0406 0.0019 
0.0533 3.9739 0.0379 0.0415 0 .0681 0.0042 

with the exact results, at least within the ranges of 
E x ,  E 2 ,  E3  and N that were considered. 

An alternative approach to the construction of our 
parametric approximation of p = K'/K is to fit a non- 
linear function to the ratio values that were estimated 
from the exact computation. The function chosen was 

p(EI, E2, E 3 )  = (Cl + c2T1 + c 3 T 2 +  ¢4T3)  

xexp(blT~+b2Tz+b3T3), (17) 

where 7"1, 7"2, T3 are defined above. The nonlinear 
parameters, bi, i = 1, . . . ,  3, were estimated by the 
simplex method (Nelder & Mead, 1965), where each 
iteration of the simplex procedure was followed by 
a linear least-squares run that found the linear par- 
ameters Ck, k =  1 , . . . , 4 .  The linear and nonlinear 
parameters are given in Table 3 for the six values of 
N previously considered. A considerable advantage 
of the simplex method over other estimators of non- 

linear parameters is its relative insensitivity to the 
initial guess, which is apparent for the type of function 
given by (16). The simplex method is well docu- 
mented (see, for example, Jacoby, Kowalik & Pizzo, 
1972). 

Table 4 lists the average R factors comparing ideal 
(Cochran-type), approximate (from a modified •) 
and exact c.p.d.f.'s. It is seen here that the modified-K 
approximation, obtained by the simplex method, 
agrees even better than that obtained from the poly- 
nomial fit with the exact results, at least within the 
ranges of El,  E2, E3 and N that were considered. 

As will be illustrated in what follows, such K ratios 
for general values of N can be obtained to a good 
approximation by Lagrange's three-point interpola- 
tion (see, for example, Abramowitz & Stegun, 1972). 
The exact c.p.d.f, was computed for the 26 values of 
N, within the range considered, and for several typical 
triplets of E values. For each one we compared the 
p ( N )  sequence based on the full computation, using 
(12), with the p(N) sequence calculated from (17) 
and Table 3 and completed by three-point interpola- 
tion. A comparison of such sequences is shown in 
Fig. 3(a),  for a moderately strong triplet. Fig. 3(b) 
shows the comparison of corresponding sequences of 
R factors for the relevant c.p.d.f.'s: (i) R(N) between 
the c.p.d.f.'s based on Table 3 and three-point interpo- 
lation, and the c.p.d.f.'s that were accurately com- 
puted and (ii) R(N) between the c.p.d.f.'s based on 
Table 3 and three-point interpolation, and the 
c.p.d.f.'s based on the Cochran (1955) formula, given 
by (2). Fig. 3 displays the case of greatest discrepan- 
cies between the exact and modified-K c.p.d.f.'s, with 
all R values apart from that for N = 15 less than 0.03. 
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The R values for the modified-K vs Cochran (1955) 
c.p.d.f.'s are higher by factors of 10 to 15 for the 
equal-atom case considered here. 

It may be stated that, for the range of parameters 
examined in this study, the Cochran approximation 
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Fig. 3. Modified-K ratios and R factors as a function of N for 
c.p.d.f.'s of  a three-phase invariant with E~ = 2.00, E 2 =2.25 
and E 3 = 2.50. (a) Comparison of p = K'/K obtained from (17), 
Table 3 and three-point interpolation (filled circles) with ratios 
obtained from exact computations (open squares). (b) Com- 
parison of R factors from (16) between modified-K and exact 
c.p.d.f.'s (filled squares) and those between modified-K and 
Cochran (1955) c.p.d.f.'s (open triangles). 

tends to resemble the exact distributions as N 
increases and the magnitudes of E that are involved 
decrease. Thus, for an equal-atom structure, the dis- 
crepancy between ideal and exact distributions 
depends on both the E values and the number of 
atoms in the unit cell. As pointed out above, the 
presence of an outstandingly heavy atom would'prob- 
ably have the effect of decreasing N, as indicated by 
the calculatons reported elsewhere (Shmueli & Weiss, 
1985, 1986; Shmueli et al., 1989b). 

This research was supported in part by the United 
States-Israel Binational Science Foundation, grant 
no. 88-00210, and a grant from the Israel Academy 
of Sciences. Most of the computations pertaining to 
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